There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ ({x}^{2} + 3x - 2)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2} + 3x - 2\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2} + 3x - 2\right)}{dx}\\=&2x + 3 + 0\\=&2x + 3\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2x + 3\right)}{dx}\\=&2 + 0\\=&2\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 2\right)}{dx}\\=&0\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !