There are 1 questions in this calculation: for each question, the 1 derivative of t is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(1 + t) - ln(1 - t) - 2t\ with\ respect\ to\ t:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(t + 1) - ln(-t + 1) - 2t\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(t + 1) - ln(-t + 1) - 2t\right)}{dt}\\=&\frac{(1 + 0)}{(t + 1)} - \frac{(-1 + 0)}{(-t + 1)} - 2\\=&\frac{1}{(t + 1)} + \frac{1}{(-t + 1)} - 2\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !