Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{139.967}{(1 + {e}^{(-0.0197889(x - 730.623))})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{139.967}{({e}^{(-0.0197889x + 14.4582254847)} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{139.967}{({e}^{(-0.0197889x + 14.4582254847)} + 1)}\right)}{dx}\\=&139.967(\frac{-(({e}^{(-0.0197889x + 14.4582254847)}((-0.0197889 + 0)ln(e) + \frac{(-0.0197889x + 14.4582254847)(0)}{(e)})) + 0)}{({e}^{(-0.0197889x + 14.4582254847)} + 1)^{2}})\\=&\frac{2.7697929663{e}^{(-0.0197889x + 14.4582254847)}}{({e}^{(-0.0197889x + 14.4582254847)} + 1)({e}^{(-0.0197889x + 14.4582254847)} + 1)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return