Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {({e}^{a})}^{x}sin(2)x - 2ax\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x{{e}^{a}}^{x}sin(2) - 2ax\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x{{e}^{a}}^{x}sin(2) - 2ax\right)}{dx}\\=&{{e}^{a}}^{x}sin(2) + x({{e}^{a}}^{x}((1)ln({e}^{a}) + \frac{(x)(({e}^{a}((0)ln(e) + \frac{(a)(0)}{(e)})))}{({e}^{a})}))sin(2) + x{{e}^{a}}^{x}cos(2)*0 - 2a\\=&{{e}^{a}}^{x}sin(2) + x{{e}^{a}}^{x}ln({e}^{a})sin(2) - 2a\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return