There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(1 - 2x)}{(1 + 3x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{2x}{(3x + 1)} + \frac{1}{(3x + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{2x}{(3x + 1)} + \frac{1}{(3x + 1)}\right)}{dx}\\=& - 2(\frac{-(3 + 0)}{(3x + 1)^{2}})x - \frac{2}{(3x + 1)} + (\frac{-(3 + 0)}{(3x + 1)^{2}})\\=&\frac{6x}{(3x + 1)^{2}} - \frac{3}{(3x + 1)^{2}} - \frac{2}{(3x + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !