Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{-({x}^{4} - 20{x}^{3} + 148x - 480x + 576)}{(118{x}^{2} - 18{x}^{3} + {x}^{4} - 332x + 336)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-x^{4}}{(118x^{2} - 18x^{3} + x^{4} - 332x + 336)} + \frac{20x^{3}}{(118x^{2} - 18x^{3} + x^{4} - 332x + 336)} + \frac{332x}{(118x^{2} - 18x^{3} + x^{4} - 332x + 336)} - \frac{576}{(118x^{2} - 18x^{3} + x^{4} - 332x + 336)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-x^{4}}{(118x^{2} - 18x^{3} + x^{4} - 332x + 336)} + \frac{20x^{3}}{(118x^{2} - 18x^{3} + x^{4} - 332x + 336)} + \frac{332x}{(118x^{2} - 18x^{3} + x^{4} - 332x + 336)} - \frac{576}{(118x^{2} - 18x^{3} + x^{4} - 332x + 336)}\right)}{dx}\\=&-(\frac{-(118*2x - 18*3x^{2} + 4x^{3} - 332 + 0)}{(118x^{2} - 18x^{3} + x^{4} - 332x + 336)^{2}})x^{4} - \frac{4x^{3}}{(118x^{2} - 18x^{3} + x^{4} - 332x + 336)} + 20(\frac{-(118*2x - 18*3x^{2} + 4x^{3} - 332 + 0)}{(118x^{2} - 18x^{3} + x^{4} - 332x + 336)^{2}})x^{3} + \frac{20*3x^{2}}{(118x^{2} - 18x^{3} + x^{4} - 332x + 336)} + 332(\frac{-(118*2x - 18*3x^{2} + 4x^{3} - 332 + 0)}{(118x^{2} - 18x^{3} + x^{4} - 332x + 336)^{2}})x + \frac{332}{(118x^{2} - 18x^{3} + x^{4} - 332x + 336)} - 576(\frac{-(118*2x - 18*3x^{2} + 4x^{3} - 332 + 0)}{(118x^{2} - 18x^{3} + x^{4} - 332x + 336)^{2}})\\=&\frac{1316x^{5}}{(118x^{2} - 18x^{3} + x^{4} - 332x + 336)^{2}} - \frac{134x^{6}}{(118x^{2} - 18x^{3} + x^{4} - 332x + 336)^{2}} + \frac{4x^{7}}{(118x^{2} - 18x^{3} + x^{4} - 332x + 336)^{2}} - \frac{6380x^{4}}{(118x^{2} - 18x^{3} + x^{4} - 332x + 336)^{2}} - \frac{4x^{3}}{(118x^{2} - 18x^{3} + x^{4} - 332x + 336)} - \frac{109456x^{2}}{(118x^{2} - 18x^{3} + x^{4} - 332x + 336)^{2}} + \frac{26872x^{3}}{(118x^{2} - 18x^{3} + x^{4} - 332x + 336)^{2}} + \frac{60x^{2}}{(118x^{2} - 18x^{3} + x^{4} - 332x + 336)} + \frac{246160x}{(118x^{2} - 18x^{3} + x^{4} - 332x + 336)^{2}} + \frac{332}{(118x^{2} - 18x^{3} + x^{4} - 332x + 336)} - \frac{191232}{(118x^{2} - 18x^{3} + x^{4} - 332x + 336)^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return