There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ x + {e}^{(\frac{2(1 - x)}{x})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x + {e}^{(\frac{2}{x} - 2)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x + {e}^{(\frac{2}{x} - 2)}\right)}{dx}\\=&1 + ({e}^{(\frac{2}{x} - 2)}((\frac{2*-1}{x^{2}} + 0)ln(e) + \frac{(\frac{2}{x} - 2)(0)}{(e)}))\\=&\frac{-2{e}^{(\frac{2}{x} - 2)}}{x^{2}} + 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !