There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{-2{sqrt(ln(x - \frac{2}{x} + 2))}^{3}}{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-2}{3}sqrt(ln(x - \frac{2}{x} + 2))^{3}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-2}{3}sqrt(ln(x - \frac{2}{x} + 2))^{3}\right)}{dx}\\=&\frac{\frac{-2}{3}*3(ln(x - \frac{2}{x} + 2))(1 - \frac{2*-1}{x^{2}} + 0)*\frac{1}{2}}{(x - \frac{2}{x} + 2)(ln(x - \frac{2}{x} + 2))^{\frac{1}{2}}}\\=&\frac{-ln^{\frac{1}{2}}(x - \frac{2}{x} + 2)}{(x - \frac{2}{x} + 2)} - \frac{2ln^{\frac{1}{2}}(x - \frac{2}{x} + 2)}{(x - \frac{2}{x} + 2)x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !