Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(2x - 9)}^{4}{({x}^{2} + x + 1)}^{5}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 16x^{14} - 208x^{13} + 744x^{12} + 48x^{11} - 1359x^{10} - 8499x^{9} - 3033x^{8} + 21054x^{7} + 76893x^{6} + 126251x^{5} + 148021x^{4} + 118782x^{3} + 71199x^{2} + 26973x + 6561\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 16x^{14} - 208x^{13} + 744x^{12} + 48x^{11} - 1359x^{10} - 8499x^{9} - 3033x^{8} + 21054x^{7} + 76893x^{6} + 126251x^{5} + 148021x^{4} + 118782x^{3} + 71199x^{2} + 26973x + 6561\right)}{dx}\\=&16*14x^{13} - 208*13x^{12} + 744*12x^{11} + 48*11x^{10} - 1359*10x^{9} - 8499*9x^{8} - 3033*8x^{7} + 21054*7x^{6} + 76893*6x^{5} + 126251*5x^{4} + 148021*4x^{3} + 118782*3x^{2} + 71199*2x + 26973 + 0\\=&224x^{13} - 2704x^{12} + 8928x^{11} + 528x^{10} - 13590x^{9} - 76491x^{8} - 24264x^{7} + 147378x^{6} + 461358x^{5} + 631255x^{4} + 592084x^{3} + 356346x^{2} + 142398x + 26973\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return