There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ e^{{x}^{(\frac{7}{6})}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( e^{{x}^{\frac{7}{6}}}\right)}{dx}\\=&e^{{x}^{\frac{7}{6}}}({x}^{\frac{7}{6}}((0)ln(x) + \frac{(\frac{7}{6})(1)}{(x)}))\\=&\frac{7x^{\frac{1}{6}}e^{x^{\frac{7}{6}}}}{6}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{7x^{\frac{1}{6}}e^{x^{\frac{7}{6}}}}{6}\right)}{dx}\\=&\frac{7*\frac{1}{6}e^{x^{\frac{7}{6}}}}{6x^{\frac{5}{6}}} + \frac{7x^{\frac{1}{6}}e^{x^{\frac{7}{6}}}*\frac{7}{6}x^{\frac{1}{6}}}{6}\\=&\frac{7e^{x^{\frac{7}{6}}}}{36x^{\frac{5}{6}}} + \frac{49x^{\frac{1}{3}}e^{x^{\frac{7}{6}}}}{36}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !