Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{sqrt({y}^{2} - {(X - x)}^{2})u}{L}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{usqrt(y^{2} + 2Xx - X^{2} - x^{2})}{L}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{usqrt(y^{2} + 2Xx - X^{2} - x^{2})}{L}\right)}{dx}\\=&\frac{u(0 + 2X + 0 - 2x)*\frac{1}{2}}{L(y^{2} + 2Xx - X^{2} - x^{2})^{\frac{1}{2}}}\\=&\frac{Xu}{(y^{2} + 2Xx - X^{2} - x^{2})^{\frac{1}{2}}L} - \frac{ux}{(y^{2} + 2Xx - X^{2} - x^{2})^{\frac{1}{2}}L}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return