Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{(1 - sec(x))}{tan(x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{sec(x)}{tan(x)} + \frac{1}{tan(x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{sec(x)}{tan(x)} + \frac{1}{tan(x)}\right)}{dx}\\=& - \frac{-sec^{2}(x)(1)sec(x)}{tan^{2}(x)} - \frac{sec(x)tan(x)}{tan(x)} + \frac{-sec^{2}(x)(1)}{tan^{2}(x)}\\=&\frac{sec^{3}(x)}{tan^{2}(x)} - sec(x) - \frac{sec^{2}(x)}{tan^{2}(x)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{sec^{3}(x)}{tan^{2}(x)} - sec(x) - \frac{sec^{2}(x)}{tan^{2}(x)}\right)}{dx}\\=&\frac{-2sec^{2}(x)(1)sec^{3}(x)}{tan^{3}(x)} + \frac{3sec^{3}(x)tan(x)}{tan^{2}(x)} - sec(x)tan(x) - \frac{-2sec^{2}(x)(1)sec^{2}(x)}{tan^{3}(x)} - \frac{2sec^{2}(x)tan(x)}{tan^{2}(x)}\\=& - \frac{2sec^{5}(x)}{tan^{3}(x)} + \frac{3sec^{3}(x)}{tan(x)} - tan(x)sec(x) + \frac{2sec^{4}(x)}{tan^{3}(x)} - \frac{2sec^{2}(x)}{tan(x)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return