There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{7}{(7x + 3)} - \frac{3}{(4 - 3x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{7}{(7x + 3)} - \frac{3}{(-3x + 4)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{7}{(7x + 3)} - \frac{3}{(-3x + 4)}\right)}{dx}\\=&7(\frac{-(7 + 0)}{(7x + 3)^{2}}) - 3(\frac{-(-3 + 0)}{(-3x + 4)^{2}})\\=&\frac{-49}{(7x + 3)^{2}} - \frac{9}{(-3x + 4)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !