There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{-{(y - z)}^{2}}{(4x(1 - x))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2yz}{(4x - 4x^{2})} - \frac{y^{2}}{(4x - 4x^{2})} - \frac{z^{2}}{(4x - 4x^{2})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2yz}{(4x - 4x^{2})} - \frac{y^{2}}{(4x - 4x^{2})} - \frac{z^{2}}{(4x - 4x^{2})}\right)}{dx}\\=&2(\frac{-(4 - 4*2x)}{(4x - 4x^{2})^{2}})yz + 0 - (\frac{-(4 - 4*2x)}{(4x - 4x^{2})^{2}})y^{2} + 0 - (\frac{-(4 - 4*2x)}{(4x - 4x^{2})^{2}})z^{2} + 0\\=&\frac{16yzx}{(4x - 4x^{2})^{2}} - \frac{8yz}{(4x - 4x^{2})^{2}} - \frac{8y^{2}x}{(4x - 4x^{2})^{2}} + \frac{4y^{2}}{(4x - 4x^{2})^{2}} - \frac{8z^{2}x}{(4x - 4x^{2})^{2}} + \frac{4z^{2}}{(4x - 4x^{2})^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !