There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {({x}^{2} + 7)}^{5}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{10} + 35x^{8} + 490x^{6} + 3430x^{4} + 12005x^{2} + 16807\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{10} + 35x^{8} + 490x^{6} + 3430x^{4} + 12005x^{2} + 16807\right)}{dx}\\=&10x^{9} + 35*8x^{7} + 490*6x^{5} + 3430*4x^{3} + 12005*2x + 0\\=&10x^{9} + 280x^{7} + 2940x^{5} + 13720x^{3} + 24010x\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !