There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ e^{2x}(3cos(5x) - sin(5x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 3e^{2x}cos(5x) - e^{2x}sin(5x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 3e^{2x}cos(5x) - e^{2x}sin(5x)\right)}{dx}\\=&3e^{2x}*2cos(5x) + 3e^{2x}*-sin(5x)*5 - e^{2x}*2sin(5x) - e^{2x}cos(5x)*5\\=&e^{2x}cos(5x) - 17e^{2x}sin(5x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( e^{2x}cos(5x) - 17e^{2x}sin(5x)\right)}{dx}\\=&e^{2x}*2cos(5x) + e^{2x}*-sin(5x)*5 - 17e^{2x}*2sin(5x) - 17e^{2x}cos(5x)*5\\=&-83e^{2x}cos(5x) - 39e^{2x}sin(5x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !