Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ (\frac{4}{3})e^{3x}sin(3x) - 3sin(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{4}{3}e^{3x}sin(3x) - 3sin(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{4}{3}e^{3x}sin(3x) - 3sin(x)\right)}{dx}\\=&\frac{4}{3}e^{3x}*3sin(3x) + \frac{4}{3}e^{3x}cos(3x)*3 - 3cos(x)\\=&4e^{3x}sin(3x) + 4e^{3x}cos(3x) - 3cos(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 4e^{3x}sin(3x) + 4e^{3x}cos(3x) - 3cos(x)\right)}{dx}\\=&4e^{3x}*3sin(3x) + 4e^{3x}cos(3x)*3 + 4e^{3x}*3cos(3x) + 4e^{3x}*-sin(3x)*3 - 3*-sin(x)\\=&24e^{3x}cos(3x) + 3sin(x)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return