There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 2e^{-2x} - e^{-5x} + 3\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2e^{-2x} - e^{-5x} + 3\right)}{dx}\\=&2e^{-2x}*-2 - e^{-5x}*-5 + 0\\=&-4e^{-2x} + 5e^{-5x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -4e^{-2x} + 5e^{-5x}\right)}{dx}\\=&-4e^{-2x}*-2 + 5e^{-5x}*-5\\=&8e^{-2x} - 25e^{-5x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !