There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ -e^{5x} - e^{-2x} - 3sin(3x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -e^{5x} - e^{-2x} - 3sin(3x)\right)}{dx}\\=&-e^{5x}*5 - e^{-2x}*-2 - 3cos(3x)*3\\=&-5e^{5x} + 2e^{-2x} - 9cos(3x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -5e^{5x} + 2e^{-2x} - 9cos(3x)\right)}{dx}\\=&-5e^{5x}*5 + 2e^{-2x}*-2 - 9*-sin(3x)*3\\=&-25e^{5x} - 4e^{-2x} + 27sin(3x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !