There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {{a}^{x}}^{2} + {{x}^{a}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {a}^{(2x)} + {x}^{(2a)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {a}^{(2x)} + {x}^{(2a)}\right)}{dx}\\=&({a}^{(2x)}((2)ln(a) + \frac{(2x)(0)}{(a)})) + ({x}^{(2a)}((0)ln(x) + \frac{(2a)(1)}{(x)}))\\=&2{a}^{(2x)}ln(a) + \frac{2a{x}^{(2a)}}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !