There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ e^{t} - \frac{e^{-t}}{e^{t}} + e^{-t}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{e^{-t}}{e^{t}} + e^{t} + e^{-t}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{e^{-t}}{e^{t}} + e^{t} + e^{-t}\right)}{dx}\\=& - \frac{e^{-t}*0}{e^{t}} - \frac{e^{-t}*-e^{t}*0}{e^{{t}*{2}}} + e^{t}*0 + e^{-t}*0\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !