Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(e^{t} - e^{-t})}{(e^{t} + e^{-t})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{e^{t}}{(e^{t} + e^{-t})} - \frac{e^{-t}}{(e^{t} + e^{-t})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{e^{t}}{(e^{t} + e^{-t})} - \frac{e^{-t}}{(e^{t} + e^{-t})}\right)}{dx}\\=&(\frac{-(e^{t}*0 + e^{-t}*0)}{(e^{t} + e^{-t})^{2}})e^{t} + \frac{e^{t}*0}{(e^{t} + e^{-t})} - (\frac{-(e^{t}*0 + e^{-t}*0)}{(e^{t} + e^{-t})^{2}})e^{-t} - \frac{e^{-t}*0}{(e^{t} + e^{-t})}\\=& - 0\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return