There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(0.24xx + 3.2)}{(xx - 75x + 2304)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{0.24x^{2}}{(x^{2} - 75x + 2304)} + \frac{3.2}{(x^{2} - 75x + 2304)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{0.24x^{2}}{(x^{2} - 75x + 2304)} + \frac{3.2}{(x^{2} - 75x + 2304)}\right)}{dx}\\=&0.24(\frac{-(2x - 75 + 0)}{(x^{2} - 75x + 2304)^{2}})x^{2} + \frac{0.24*2x}{(x^{2} - 75x + 2304)} + 3.2(\frac{-(2x - 75 + 0)}{(x^{2} - 75x + 2304)^{2}})\\=&\frac{-0.48x^{3}}{(x^{2} - 75x + 2304)(x^{2} - 75x + 2304)} + \frac{18x^{2}}{(x^{2} - 75x + 2304)(x^{2} - 75x + 2304)} + \frac{0.48x}{(x^{2} - 75x + 2304)} - \frac{6.4x}{(x^{2} - 75x + 2304)(x^{2} - 75x + 2304)} + \frac{240}{(x^{2} - 75x + 2304)(x^{2} - 75x + 2304)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !