There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ Ke^{e^{p}}th(e^{s})e^{n}te^{n}ce^{m}e^{a}ningunch(a)nge^{d}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = Kn^{4}tcig^{2}ue^{m}e^{a}e^{e^{p}}e^{{n}*{2}}e^{d}ch(a)th(e^{s})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( Kn^{4}tcig^{2}ue^{m}e^{a}e^{e^{p}}e^{{n}*{2}}e^{d}ch(a)th(e^{s})\right)}{dx}\\=&Kn^{4}tcig^{2}ue^{m}*0e^{a}e^{e^{p}}e^{{n}*{2}}e^{d}ch(a)th(e^{s}) + Kn^{4}tcig^{2}ue^{m}e^{a}*0e^{e^{p}}e^{{n}*{2}}e^{d}ch(a)th(e^{s}) + Kn^{4}tcig^{2}ue^{m}e^{a}e^{e^{p}}e^{p}*0e^{{n}*{2}}e^{d}ch(a)th(e^{s}) + Kn^{4}tcig^{2}ue^{m}e^{a}e^{e^{p}}*2e^{n}e^{n}*0e^{d}ch(a)th(e^{s}) + Kn^{4}tcig^{2}ue^{m}e^{a}e^{e^{p}}e^{{n}*{2}}e^{d}*0ch(a)th(e^{s}) + Kn^{4}tcig^{2}ue^{m}e^{a}e^{e^{p}}e^{{n}*{2}}e^{d}sh(a)*0th(e^{s}) + Kn^{4}tcig^{2}ue^{m}e^{a}e^{e^{p}}e^{{n}*{2}}e^{d}ch(a)(1 - th^{2}(e^{s}))e^{s}*0\\=& - 0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !