Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt({(a - \frac{b}{x})}^{2} + {(b - ak)}^{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(a^{2}k^{2} - \frac{2ab}{x} + \frac{b^{2}}{x^{2}} + b^{2} - 2abk + a^{2})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(a^{2}k^{2} - \frac{2ab}{x} + \frac{b^{2}}{x^{2}} + b^{2} - 2abk + a^{2})\right)}{dx}\\=&\frac{(0 - \frac{2ab*-1}{x^{2}} + \frac{b^{2}*-2}{x^{3}} + 0 + 0 + 0)*\frac{1}{2}}{(a^{2}k^{2} - \frac{2ab}{x} + \frac{b^{2}}{x^{2}} + b^{2} - 2abk + a^{2})^{\frac{1}{2}}}\\=&\frac{ab}{(a^{2}k^{2} - \frac{2ab}{x} + \frac{b^{2}}{x^{2}} + b^{2} - 2abk + a^{2})^{\frac{1}{2}}x^{2}} - \frac{b^{2}}{(a^{2}k^{2} - \frac{2ab}{x} + \frac{b^{2}}{x^{2}} + b^{2} - 2abk + a^{2})^{\frac{1}{2}}x^{3}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return