There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ log_{10}^{x + sqrt(({a}^{2}) + ({x}^{2}))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = log_{10}^{x + sqrt(a^{2} + x^{2})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( log_{10}^{x + sqrt(a^{2} + x^{2})}\right)}{dx}\\=&(\frac{(\frac{(1 + \frac{(0 + 2x)*\frac{1}{2}}{(a^{2} + x^{2})^{\frac{1}{2}}})}{(x + sqrt(a^{2} + x^{2}))} - \frac{(0)log_{10}^{x + sqrt(a^{2} + x^{2})}}{(10)})}{(ln(10))})\\=&\frac{x}{(a^{2} + x^{2})^{\frac{1}{2}}(x + sqrt(a^{2} + x^{2}))ln(10)} + \frac{1}{(x + sqrt(a^{2} + x^{2}))ln(10)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !