There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {({x}^{2} + 9)}^{2}(x - 9)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{5} + 18x^{3} - 9x^{4} + 81x - 162x^{2} - 729\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{5} + 18x^{3} - 9x^{4} + 81x - 162x^{2} - 729\right)}{dx}\\=&5x^{4} + 18*3x^{2} - 9*4x^{3} + 81 - 162*2x + 0\\=&5x^{4} + 54x^{2} - 36x^{3} - 324x + 81\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !