There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{6{t}^{2}}{({(4{t}^{2} + 2t - 1)}^{(\frac{-3}{2})})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 6(4t^{2} + 2t - 1)^{\frac{3}{2}}t^{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 6(4t^{2} + 2t - 1)^{\frac{3}{2}}t^{2}\right)}{dx}\\=&6(\frac{3}{2}(4t^{2} + 2t - 1)^{\frac{1}{2}}(0 + 0 + 0))t^{2} + 0\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !