Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 10 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 10th\ derivative\ of\ function\ {x}^{x} + {ln(x)}^{2} - sin(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {x}^{x} + ln^{2}(x) - sin(x)\\\\ &\color{blue}{The\ 10th\ derivative\ of\ function:} \\=&{x}^{x}ln^{10}(x) + 10{x}^{x}ln^{9}(x) + \frac{45{x}^{x}ln^{8}(x)}{x} + 45{x}^{x}ln^{8}(x) + 120{x}^{x}ln^{7}(x) + \frac{360{x}^{x}ln^{7}(x)}{x} - \frac{120{x}^{x}ln^{7}(x)}{x^{2}} + 210{x}^{x}ln^{6}(x) + 252{x}^{x}ln^{5}(x) + \frac{1260{x}^{x}ln^{6}(x)}{x} + 210{x}^{x}ln^{4}(x) + 120{x}^{x}ln^{3}(x) + \frac{2520{x}^{x}ln^{5}(x)}{x} + \frac{1260{x}^{x}ln^{5}(x)}{x^{2}} + \frac{420{x}^{x}ln^{6}(x)}{x^{3}} + 45{x}^{x}ln^{2}(x) + \frac{3150{x}^{x}ln^{4}(x)}{x} + \frac{2520{x}^{x}ln^{3}(x)}{x} + \frac{5250{x}^{x}ln^{4}(x)}{x^{2}} + \frac{1260{x}^{x}ln^{2}(x)}{x} + \frac{360{x}^{x}ln(x)}{x} + \frac{8400{x}^{x}ln^{3}(x)}{x^{2}} - \frac{3150{x}^{x}ln^{4}(x)}{x^{3}} - \frac{4200{x}^{x}ln^{3}(x)}{x^{3}} - \frac{1512{x}^{x}ln^{5}(x)}{x^{4}} - \frac{210{x}^{x}ln^{6}(x)}{x^{2}} + \frac{840{x}^{x}ln^{4}(x)}{x^{4}} + \frac{6930{x}^{x}ln^{2}(x)}{x^{2}} + \frac{2940{x}^{x}ln(x)}{x^{2}} + \frac{5040{x}^{x}ln^{4}(x)}{x^{5}} - \frac{3360{x}^{x}ln^{3}(x)}{x^{5}} + \frac{5880{x}^{x}ln^{3}(x)}{x^{4}} - \frac{14400{x}^{x}ln^{3}(x)}{x^{6}} + \frac{2520{x}^{x}ln(x)}{x^{3}} - \frac{8820{x}^{x}ln^{2}(x)}{x^{5}} + \frac{8460{x}^{x}ln^{2}(x)}{x^{6}} - \frac{2310{x}^{x}ln(x)}{x^{4}} + \frac{32400{x}^{x}ln^{2}(x)}{x^{7}} + \frac{2205{x}^{x}ln^{2}(x)}{x^{4}} + \frac{9440{x}^{x}ln(x)}{x^{6}} - \frac{13680{x}^{x}ln(x)}{x^{7}} - \frac{50400{x}^{x}ln(x)}{x^{8}} + \frac{1050{x}^{x}}{x^{3}} - \frac{820{x}^{x}}{x^{6}} - \frac{5340{x}^{x}}{x^{7}} + \frac{510{x}^{x}}{x^{2}} + \frac{11016{x}^{x}}{x^{8}} + \frac{1365{x}^{x}}{x^{5}} - \frac{987{x}^{x}}{x^{4}} + 10{x}^{x}ln(x) + \frac{45{x}^{x}}{x} + \frac{40320{x}^{x}}{x^{9}} + {x}^{x} - \frac{725760ln(x)}{x^{10}} + \frac{2053152}{x^{10}} + sin(x)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return