There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ({x}^{4} - 3{x}^{2} - 18x){\frac{1}{(1 - {x}^{2})}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{4}}{(-x^{2} + 1)^{2}} - \frac{3x^{2}}{(-x^{2} + 1)^{2}} - \frac{18x}{(-x^{2} + 1)^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{4}}{(-x^{2} + 1)^{2}} - \frac{3x^{2}}{(-x^{2} + 1)^{2}} - \frac{18x}{(-x^{2} + 1)^{2}}\right)}{dx}\\=&(\frac{-2(-2x + 0)}{(-x^{2} + 1)^{3}})x^{4} + \frac{4x^{3}}{(-x^{2} + 1)^{2}} - 3(\frac{-2(-2x + 0)}{(-x^{2} + 1)^{3}})x^{2} - \frac{3*2x}{(-x^{2} + 1)^{2}} - 18(\frac{-2(-2x + 0)}{(-x^{2} + 1)^{3}})x - \frac{18}{(-x^{2} + 1)^{2}}\\=&\frac{4x^{5}}{(-x^{2} + 1)^{3}} + \frac{4x^{3}}{(-x^{2} + 1)^{2}} - \frac{12x^{3}}{(-x^{2} + 1)^{3}} - \frac{6x}{(-x^{2} + 1)^{2}} - \frac{72x^{2}}{(-x^{2} + 1)^{3}} - \frac{18}{(-x^{2} + 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !