There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ({x}^{8} - 5{x}^{4}){\frac{1}{({x}^{4} + 1)}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{8}}{(x^{4} + 1)^{2}} - \frac{5x^{4}}{(x^{4} + 1)^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{8}}{(x^{4} + 1)^{2}} - \frac{5x^{4}}{(x^{4} + 1)^{2}}\right)}{dx}\\=&(\frac{-2(4x^{3} + 0)}{(x^{4} + 1)^{3}})x^{8} + \frac{8x^{7}}{(x^{4} + 1)^{2}} - 5(\frac{-2(4x^{3} + 0)}{(x^{4} + 1)^{3}})x^{4} - \frac{5*4x^{3}}{(x^{4} + 1)^{2}}\\=&\frac{-8x^{11}}{(x^{4} + 1)^{3}} + \frac{8x^{7}}{(x^{4} + 1)^{2}} + \frac{40x^{7}}{(x^{4} + 1)^{3}} - \frac{20x^{3}}{(x^{4} + 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !