There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sin(\frac{x}{2}) + arccos(3x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sin(\frac{1}{2}x) + arccos(3x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin(\frac{1}{2}x) + arccos(3x)\right)}{dx}\\=&cos(\frac{1}{2}x)*\frac{1}{2} + (\frac{-(3)}{((1 - (3x)^{2})^{\frac{1}{2}})})\\=&\frac{cos(\frac{1}{2}x)}{2} - \frac{3}{(-9x^{2} + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !