There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ (x - 8){x}^{\frac{1}{5}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x{x}^{\frac{1}{5}} - 8{x}^{\frac{1}{5}}\right)}{dx}\\=&{x}^{\frac{1}{5}} + x({x}^{\frac{1}{5}}((0)ln(x) + \frac{(\frac{1}{5})(1)}{(x)})) - 8({x}^{\frac{1}{5}}((0)ln(x) + \frac{(\frac{1}{5})(1)}{(x)}))\\=&\frac{6x^{\frac{1}{5}}}{5} - \frac{8}{5x^{\frac{4}{5}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{6x^{\frac{1}{5}}}{5} - \frac{8}{5x^{\frac{4}{5}}}\right)}{dx}\\=&\frac{6*\frac{1}{5}}{5x^{\frac{4}{5}}} - \frac{8*\frac{-4}{5}}{5x^{\frac{9}{5}}}\\=&\frac{6}{25x^{\frac{4}{5}}} + \frac{32}{25x^{\frac{9}{5}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !