There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 10x - {e}^{(\frac{1}{2}x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 10x - {e}^{(\frac{1}{2}x)}\right)}{dx}\\=&10 - ({e}^{(\frac{1}{2}x)}((\frac{1}{2})ln(e) + \frac{(\frac{1}{2}x)(0)}{(e)}))\\=& - \frac{{e}^{(\frac{1}{2}x)}}{2} + 10\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - \frac{{e}^{(\frac{1}{2}x)}}{2} + 10\right)}{dx}\\=& - \frac{({e}^{(\frac{1}{2}x)}((\frac{1}{2})ln(e) + \frac{(\frac{1}{2}x)(0)}{(e)}))}{2} + 0\\=& - \frac{{e}^{(\frac{1}{2}x)}}{4}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !