There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {log_{2}^{1 - {x}^{2}}}^{\frac{1}{3}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {\left(log_{2}^{-x^{2} + 1}\right)}^{\frac{1}{3}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {\left(log_{2}^{-x^{2} + 1}\right)}^{\frac{1}{3}}\right)}{dx}\\=&(\frac{\frac{1}{3}(\frac{(-2x + 0)}{(-x^{2} + 1)} - \frac{(0)log_{2}^{-x^{2} + 1}}{(2)})}{{\left(log(2, -x^{2} + 1)^{\frac{2}{3}}(ln(2))})\\=&\frac{-2x}{3(-x^{2} + 1){\left(log(2, -x^{2} + 1)^{\frac{2}{3}}ln(2)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !