Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ log_{2}^{{(1 - {x}^{2})}^{\frac{1}{3}}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = log_{2}^{(-x^{2} + 1)^{\frac{1}{3}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( log_{2}^{(-x^{2} + 1)^{\frac{1}{3}}}\right)}{dx}\\=&(\frac{(\frac{((\frac{\frac{1}{3}(-2x + 0)}{(-x^{2} + 1)^{\frac{2}{3}}}))}{((-x^{2} + 1)^{\frac{1}{3}})} - \frac{(0)log_{2}^{(-x^{2} + 1)^{\frac{1}{3}}}}{(2)})}{(ln(2))})\\=&\frac{-2x}{3(-x^{2} + 1)ln(2)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-2x}{3(-x^{2} + 1)ln(2)}\right)}{dx}\\=&\frac{-2(\frac{-(-2x + 0)}{(-x^{2} + 1)^{2}})x}{3ln(2)} - \frac{2}{3(-x^{2} + 1)ln(2)} - \frac{2x*-0}{3(-x^{2} + 1)ln^{2}(2)(2)}\\=&\frac{-4x^{2}}{3(-x^{2} + 1)^{2}ln(2)} - \frac{2}{3(-x^{2} + 1)ln(2)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return