Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(10)}{(sqrt({(10 - 0.15{x}^{2})}^{2} + {(x - 0.005{x}^{3})}^{2}))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{10}{sqrt(-0.15x + x - 0.005x + 10)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{10}{sqrt(-0.15x + x - 0.005x + 10)}\right)}{dx}\\=&\frac{10*-(-0.15 + 1 - 0.005 + 0)*0.5}{(-0.15x + x - 0.005x + 10)(-0.15x + x - 0.005x + 10)^{\frac{1}{2}}}\\=&\frac{0.75}{(-0.15x + x - 0.005x + 10)(-0.15x + x - 0.005x + 10)^{\frac{1}{2}}} - \frac{5}{(-0.15x + x - 0.005x + 10)(-0.15x + x - 0.005x + 10)^{\frac{1}{2}}} + \frac{0.025}{(-0.15x + x - 0.005x + 10)(-0.15x + x - 0.005x + 10)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return