There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ cos(pix){\frac{1}{(x - 1)}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{cos(pix)}{(x - 1)^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{cos(pix)}{(x - 1)^{2}}\right)}{dx}\\=&(\frac{-2(1 + 0)}{(x - 1)^{3}})cos(pix) + \frac{-sin(pix)pi}{(x - 1)^{2}}\\=&\frac{-2cos(pix)}{(x - 1)^{3}} - \frac{pisin(pix)}{(x - 1)^{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-2cos(pix)}{(x - 1)^{3}} - \frac{pisin(pix)}{(x - 1)^{2}}\right)}{dx}\\=&-2(\frac{-3(1 + 0)}{(x - 1)^{4}})cos(pix) - \frac{2*-sin(pix)pi}{(x - 1)^{3}} - (\frac{-2(1 + 0)}{(x - 1)^{3}})pisin(pix) - \frac{picos(pix)pi}{(x - 1)^{2}}\\=&\frac{6cos(pix)}{(x - 1)^{4}} + \frac{4pisin(pix)}{(x - 1)^{3}} - \frac{p^{2}i^{2}cos(pix)}{(x - 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !