There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ({x}^{(\frac{3}{5})}){(x - 3)}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{\frac{18}{5}} - 9x^{\frac{13}{5}} + 27x^{\frac{8}{5}} - 27x^{\frac{3}{5}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{\frac{18}{5}} - 9x^{\frac{13}{5}} + 27x^{\frac{8}{5}} - 27x^{\frac{3}{5}}\right)}{dx}\\=&\frac{18}{5}x^{\frac{13}{5}} - 9*\frac{13}{5}x^{\frac{8}{5}} + 27*\frac{8}{5}x^{\frac{3}{5}} - \frac{27*\frac{3}{5}}{x^{\frac{2}{5}}}\\=&\frac{18x^{\frac{13}{5}}}{5} - \frac{117x^{\frac{8}{5}}}{5} + \frac{216x^{\frac{3}{5}}}{5} - \frac{81}{5x^{\frac{2}{5}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !