There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{2a}{(1 + {e}^{(b(x - d))})} - a\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2a}{({e}^{(bx - bd)} + 1)} - a\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2a}{({e}^{(bx - bd)} + 1)} - a\right)}{dx}\\=&2(\frac{-(({e}^{(bx - bd)}((b + 0)ln(e) + \frac{(bx - bd)(0)}{(e)})) + 0)}{({e}^{(bx - bd)} + 1)^{2}})a + 0 + 0\\=&\frac{-2ab{e}^{(bx - bd)}}{({e}^{(bx - bd)} + 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !