There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 2({x}^{\frac{1}{3}}) - \frac{3}{x} + sqrt(5)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2x^{\frac{1}{3}} - \frac{3}{x} + sqrt(5)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2x^{\frac{1}{3}} - \frac{3}{x} + sqrt(5)\right)}{dx}\\=&\frac{2*\frac{1}{3}}{x^{\frac{2}{3}}} - \frac{3*-1}{x^{2}} + 0*\frac{1}{2}*5^{\frac{1}{2}}\\=&\frac{2}{3x^{\frac{2}{3}}} + \frac{3}{x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !