There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ arcsin(sqrt(\frac{x}{1} + x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = arcsin(sqrt(2x))\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arcsin(sqrt(2x))\right)}{dx}\\=&(\frac{(\frac{2*\frac{1}{2}}{(2x)^{\frac{1}{2}}})}{((1 - (sqrt(2x))^{2})^{\frac{1}{2}})})\\=&\frac{1}{2^{\frac{1}{2}}(-sqrt(2x)^{2} + 1)^{\frac{1}{2}}x^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !