There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{41}{(1 + {3}^{(4 - x)})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{41}{({3}^{(-x + 4)} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{41}{({3}^{(-x + 4)} + 1)}\right)}{dx}\\=&41(\frac{-(({3}^{(-x + 4)}((-1 + 0)ln(3) + \frac{(-x + 4)(0)}{(3)})) + 0)}{({3}^{(-x + 4)} + 1)^{2}})\\=&\frac{41 * {3}^{(-x + 4)}ln(3)}{({3}^{(-x + 4)} + 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !