There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 2 - {(x - 1)}^{\frac{1}{3}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - (x - 1)^{\frac{1}{3}} + 2\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - (x - 1)^{\frac{1}{3}} + 2\right)}{dx}\\=& - (\frac{\frac{1}{3}(1 + 0)}{(x - 1)^{\frac{2}{3}}}) + 0\\=& - \frac{1}{3(x - 1)^{\frac{2}{3}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - \frac{1}{3(x - 1)^{\frac{2}{3}}}\right)}{dx}\\=& - \frac{(\frac{\frac{-2}{3}(1 + 0)}{(x - 1)^{\frac{5}{3}}})}{3}\\=&\frac{2}{9(x - 1)^{\frac{5}{3}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !