There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ (x - 1){x}^{(\frac{3}{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x{x}^{\frac{3}{2}} - {x}^{\frac{3}{2}}\right)}{dx}\\=&{x}^{\frac{3}{2}} + x({x}^{\frac{3}{2}}((0)ln(x) + \frac{(\frac{3}{2})(1)}{(x)})) - ({x}^{\frac{3}{2}}((0)ln(x) + \frac{(\frac{3}{2})(1)}{(x)}))\\=&\frac{5x^{\frac{3}{2}}}{2} - \frac{3x^{\frac{1}{2}}}{2}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{5x^{\frac{3}{2}}}{2} - \frac{3x^{\frac{1}{2}}}{2}\right)}{dx}\\=&\frac{5*\frac{3}{2}x^{\frac{1}{2}}}{2} - \frac{3*\frac{1}{2}}{2x^{\frac{1}{2}}}\\=&\frac{15x^{\frac{1}{2}}}{4} - \frac{3}{4x^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !