There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {sin(ln(x))}^{\frac{1}{x}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {sin(ln(x))}^{\frac{1}{x}}\right)}{dx}\\=&({sin(ln(x))}^{\frac{1}{x}}((\frac{-1}{x^{2}})ln(sin(ln(x))) + \frac{(\frac{1}{x})(\frac{cos(ln(x))}{(x)})}{(sin(ln(x)))}))\\=&\frac{-{sin(ln(x))}^{\frac{1}{x}}ln(sin(ln(x)))}{x^{2}} + \frac{{sin(ln(x))}^{\frac{1}{x}}cos(ln(x))}{x^{2}sin(ln(x))}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !