There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{10000}{(1 + \frac{x}{100})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{10000}{(\frac{1}{100}x + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{10000}{(\frac{1}{100}x + 1)}\right)}{dx}\\=&10000(\frac{-(\frac{1}{100} + 0)}{(\frac{1}{100}x + 1)^{2}})\\=&\frac{-100}{(\frac{1}{100}x + 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !