There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {x}^{(\frac{3}{5})}(x - 4)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{\frac{8}{5}} - 4x^{\frac{3}{5}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{\frac{8}{5}} - 4x^{\frac{3}{5}}\right)}{dx}\\=&\frac{8}{5}x^{\frac{3}{5}} - \frac{4*\frac{3}{5}}{x^{\frac{2}{5}}}\\=&\frac{8x^{\frac{3}{5}}}{5} - \frac{12}{5x^{\frac{2}{5}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{8x^{\frac{3}{5}}}{5} - \frac{12}{5x^{\frac{2}{5}}}\right)}{dx}\\=&\frac{8*\frac{3}{5}}{5x^{\frac{2}{5}}} - \frac{12*\frac{-2}{5}}{5x^{\frac{7}{5}}}\\=&\frac{24}{25x^{\frac{2}{5}}} + \frac{24}{25x^{\frac{7}{5}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !