Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {x}^{\frac{1}{5}}(x - 6)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{\frac{6}{5}} - 6x^{\frac{1}{5}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{\frac{6}{5}} - 6x^{\frac{1}{5}}\right)}{dx}\\=&\frac{6}{5}x^{\frac{1}{5}} - \frac{6*\frac{1}{5}}{x^{\frac{4}{5}}}\\=&\frac{6x^{\frac{1}{5}}}{5} - \frac{6}{5x^{\frac{4}{5}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{6x^{\frac{1}{5}}}{5} - \frac{6}{5x^{\frac{4}{5}}}\right)}{dx}\\=&\frac{6*\frac{1}{5}}{5x^{\frac{4}{5}}} - \frac{6*\frac{-4}{5}}{5x^{\frac{9}{5}}}\\=&\frac{6}{25x^{\frac{4}{5}}} + \frac{24}{25x^{\frac{9}{5}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return