Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ({x}^{2}c + 2xyd + \frac{{y}^{2}e}{({t}^{\frac{1}{2}}v(v + xa + yb))})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = cx^{2} + 2ydx + \frac{y^{2}e}{(t^{\frac{1}{2}}vax + t^{\frac{1}{2}}v^{2} + yt^{\frac{1}{2}}vb)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( cx^{2} + 2ydx + \frac{y^{2}e}{(t^{\frac{1}{2}}vax + t^{\frac{1}{2}}v^{2} + yt^{\frac{1}{2}}vb)}\right)}{dx}\\=&c*2x + 2yd + (\frac{-(t^{\frac{1}{2}}va + 0 + 0)}{(t^{\frac{1}{2}}vax + t^{\frac{1}{2}}v^{2} + yt^{\frac{1}{2}}vb)^{2}})y^{2}e + \frac{y^{2}*0}{(t^{\frac{1}{2}}vax + t^{\frac{1}{2}}v^{2} + yt^{\frac{1}{2}}vb)}\\=&2cx + 2yd - \frac{y^{2}t^{\frac{1}{2}}vae}{(t^{\frac{1}{2}}vax + t^{\frac{1}{2}}v^{2} + yt^{\frac{1}{2}}vb)^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return